Q: Let 0<a<b. What is more a^b or b^a?

A: Let's take both terms to the power of 1/ab. That makes the question:

What is more $(a^b)^{1/ab}$ or $(b^a)^{1/ab}$? =

What is more $(a)^{1/a}$ or $(b)^{1/b}$?

Let's consider the question: If $y=(x)^{1/x}$, then if x increases slightly, then does $(x)^{1/x}$ increase or decrease?

To answer that, we must find dy/dx.

I don't like that 1/x in the exponent, so let's take the natural log of both sides to bring it down:

$$ln(y) = ln((x)^{1/x})$$

$$ln(y) = (1/x)*ln(x)$$

Now let's take the derivative of each side.

 $1/y * dy/dx = -1/x^2 * ln(x) + (1/x)*(1/x)$, via the Chain Rule.

$$dy/dx = y * (-1/x^2 * ln(x) + 1/x^2)$$

$$dv/dx = v * 1/x^2 * (1 - ln(x))$$

$$dy/dx = (x)^{1/x} * 1/x^2 * (1 - ln(x))$$

Let's figure out when this function is increasing and decreasing.

If 1-ln(x) =0, then whole function must be zero, implying that $(x)^{1/x}$ does not change with a minute change in x.

Let's add ln(x) to both sides:

$$1 = In(x)$$

x = e.

So $y=(x)^{1/x}$ reaches either a maximum or minimum at x=e. We must find which it is.

Let's let x=3. Is dy/dx positive or negative at x=3?

$$(3)^{1/3} * 1/3^2 * (1 - In(3))$$

The first two parts of this product are obviously both positive. Ln(3) > 1, so (1-ln(3)) < 0.

Positive * positive * negative = negative.

So, if x>e, then dy/dx < 0.

Likewise, if x < e, then dy/dx > 0.

An earlier question was which is more $(a)^{1/a}$ or $(b)^{1/b}$, given b>a?

If b<e, then $(a)^{1/a} < (b)^{1/b}$, because $(b)^{1/b}$ is an increasing function in this range.

So, if $(a)^{1/a} < (b)^{1/b}$, then $a^b < b^a$.

Likewise, if a>e, then $(a)^{1/a} > (b)^{1/b}$, because $(b)^{1/b}$ is a decreasing function in this range.

So, if
$$(a)^{1/a} > (b)^{1/b}$$
, then $a^b > b^a$.

In simple terms, if both a and b are greater than e, then the expression with the greater exponent is greater. For example, $3^4 > 4^3$, which is easy to verify: 81 > 64.

If both terms are less than e, then the expression with the smaller exponent is more. For example $2.5^2 > 2^2.5$, which is easy to verify: 6.25 > 5.6569.

Where it's not so simple is if a<e<b.